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A viscoplastic theory is developed that reduces analytically to creep theory under
steady-state conditions. A viscoplastic model is constructed within this theoretical

framework by defining material functions that have close ties to the physics of
inelasticity. As a consequence, this model is easily characterized--only steady-state

creep data, monotonic stress-strain curves, and saturated stress-strain hysteresis loops

are required. The model is applied to the copper alloy NARIoy Z.

1 Introduction

In mankind's enduring pursuit to go faster and further with

greater economy and safety in its diverse variety of vehicles

that travel across land and sea or through the air and space,

we are taxing our materials to their utmost capabilities. Con-
sequently, the need for accurate material models to describe

the various physical properties of a given material is much
more critical in the design and development of these vehicles

than it has ever been, and this need can only be expected to

continue to grow.

The analysis of metallic response for high temperature ap-

plications requires mathematical models capable of predicting

accurately the short-term plastic strains, the long-term creep
strains, and interactions between them. Viscoplastic models

attempt to do that. Multiaxial, cyclic and nonisothermal his-

tories are normal service conditions, not exceptional ones, all
of which challenge the predictive capabilities of such models.

Prior to the advent of the computer, viscoplasticity was a

theory in its infancy; however, over the past two decades sub-

stantial advancements have been made to the theory. Because

of viscoplasticity's innate nature, which leads to systems of

first-order, ordinary, differential equations that are nonlinear,

coupled, and mathematically stiff, a unique mathematical

structure (like that of elasticity) is not to be expected. Never-

theless, these past two decades have given the community a

vast wealth of experience with a variety of evolution equa-

tions-what works, what does not, and in many cases, some

physical insight as to why. Using this experience base, we have
set out to develop a viscoplastic model whose predictive ca-

pabilities are in reasonable agreement with experiments. A

special emphasis in this development process was that the re-

sulting model must be characterized easily. The need to follow
this requirement is vital. Experience has taught us that a mod-

el's ease of characterization without calibration via exotic ex-

periments is often considered by many industrial users of
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viscoplasticity to be of greater value than the model's ability

to predict accurately a material's behavior (within reason). We
therefore seek to strike a balance between accuracy and ease

of characterization, using physics as our guidepost.
The paper begins with a brief overview of the theories of

elasticity and creep. This is followed by a definition of vis-

coplastic flow and the introduction of the required internal
state variables. The next section demonstrates how a visco-

plastic theory can be constructed to reduce analytically to creep
theory under steady-state conditions. This important section

demonstrates how a bridge between these two theories can be

built--a concept that is not prevalent in the viscoplastic lit-

erature. By building this bridge, the model not only has a
stronger physical base, but it also reduces substantially the

complexity of material characterization. A succinct description

of the viscoplastic model is given, and for illustrative purposes,
the copper alloy NARIoy Z is modeled. This material finds

applications where moderate strength is required under con-

ditions of very high heat flux, e.g., it is used as the nozzle liner

material in the main rocket engines of NASA's space shuttles

where steep, rapidly applied, thermal gradients cause large
localized strains.

2 Elasticity

The stress, (hi, is taken to be related to the infinitesimal

strain, ei_, through the constitutive equations of an isotropic
Hookean material, viz.

So=21.t(Eij-E_) where _,=0, (1)

and

o',k = 3_(E_, - or( T- T0)6,k), (2)

which are characterized by the shear, t_, and bulk, _, elastic
moduli, and where

So=oo- l/3ok_6i: and Eij=ei:- l/3_kg3ij (3)

denote the deviatoric stress and strain, respectively. The mean
coefficient of thermal expansion, a, acts on the difference

between the current temperature, T, and some reference tem-

perature, To. The Kronecker delta, 6,j, has the value 1 if i=j,
otherwise it is 0. Repeated Latin indices are summed from I
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Tablel Elastic constants for NARIoy Z (Anonymous, 1986)

Constants Units Value

c_ K -l 16.5×10 -6
MPa 52,000

/_ MPa/K - 14
v -- 0.34

#=t_o+_T, Tis in K

tO 3 in the usual manner. Equation (1) characterizes the de-

viatoric stress response, while Eq. (2) characterizes the hydro-

static stress response. The plastic strain, e_, and thermal strain,

a(T-To)6_j, are, in essence, eigenstrains that represent de-
viations from deviatoric and hydrostatic elastic behaviors, re-

spectively.

Young's modulus, E, and Poisson's ratio, _,, are the two

elastic constants that are usually determined via experiment.

The expressions,

E E
and _= (4)

t_ = 2(1 + v) 3(1 - 2_,)'

define their interdependence with the elastic moduli of Eqs.

(1) and (2). Only two elastic moduli are independent for elast-

ically isotropic materials. Values for the elastic constants of

NARIoy Z (typical composition: Cu-3 °70Ag-0.5 °70Zr) are given
in Table 1.

3 Creep

The evolution of plastic strain which describes the classical

theory of creep (Odqvist, 1974) is given by

_§lss= 1/2W _ Ilss IISII' (5)

with the subscript "ss" implying steady-state, and where

|_Pll denotes the magnitude of plastic strain-rate, and IlSll

denotes the magnitude of deviatoric stress. The subscript sig-

nifying steady state is not attached to S u because stress is a
controllable external variable, whereas creep rate is a response

variable. This equation states that an increment in creep strain
accumulates in the current direction of the deviatoric stress.

A dot is placed over a variable to signify its time rate-of-change.

The norms, or magnitudes, pertaining to the deviatoric ten-

sors of this paper are defined by

IIIl=-,,/_ijI, j and IIJIl=_l/2J, jJi:, (6)

where 1,j is any deviatoric "strain-like" tensor, and J_: is any
deviatoric "stress-like" tensor. These are the norms of yon

Mises (1913), where the coefficients under the radical signs

scale the theory for shear.
In the theory of creep, | "_Pllssis described by a kinetic equa-

tion, i.e., an equation of state. Zener and Hollomon (1944)

determined that such a kinetic equation can, to a good ap-

proximation, be decomposed into a product of two functions;

in particular, at steady state

p mSII

It_ Ilss= O[T]Zss[--C-I >_0, (7)

where 0 >0 is a thermal function, Z>_ 0 is the Zener parameter,

and C>0 is a strength parameter that normalizes the stress.

The Zener parameter is a temperature normalized measure of

the plastic strain-rate. Square brackets, [-], are used through-
out this paper to denote "function of," and are therefore kept

logically separate from parentheses, (.), which are used for

mathematical groupings.

In the physical description of the thermal function, 0, there

is a parameter called the activation energy, Q, which--for creep
at low stresses and elevated temperatures--is associated with

self-diffusion where the rate-controlling mechanism for de-

formation is dislocation climb (Sherby and Weertman, 1979).

At higher stresses and/or more moderate temperatures, the

rate-controlling mechanism changes from diffusion-controlled

dislocation climb to obstacle-controlled dislocation glide (Kocks

et al., 1975). Along with this change in the deformation mech-
anism, there occurs a change in the activation energy (Sherby

and Burke, 1968). Miller (1976) approximates the observed

temperature dependence of the activation energy for steady-

state flow with a linear function for temperatures below some

threshold temperature, T,, while for temperatures above this

threshold the activation energy is kept constant, in accordance

with the experimental observations of Dorn (1954). Because it

is the free energy (not the activation energy) that drives the
kinetics of plastic deformation (Kocks et al., 1975), Miller

integrated his linear function for the activation energy and

obtained the following Arrhenius-like expression for the ther-

mal function,

1exp In + 1 when 0 < T_< 7",

where k is the universal gas constant (8.314 J/mole,K). The

applicability of this relationship is discussed elsewhere (Freed

et al., 1992). The transition temperature, T,, between these

two domains in activation energy is not unique; it is known
to depend on the strain-rates used to make the measurements

for activation energy. An increase in strain-rate increases the

transition temperature (Sherby and Burke, 1968). For the vast
majority of engineering applications, a transition temperature

of Tr= I/2T,_ seems appropriate for f.c.c, metals, and is used

in our characterization of NARloy Z.

When the mechanism for deformation changes from dif-
fusion-controlled dislocation climb to obstacle-controlled dis-

location glide, the creep response changes from power-law to

exponential behavior (Ashby, 1972). Following the approach

of Miller (1976), we adopt Garofalo's (1963) empirical expres-

sion for the steady-state Zener parameter, i.e.,

where A > 0, C> 0 and n > 0 are the material constants. For

stress states below power-law breakdown, i.e., when IISII < C,

the steady-state Zener parameter of Garofalo reduces to the

power-law relationship

thereby designating dislocation climb as the rate-controlling
mechanism. (Note: A, C, and n are independent in Eq. (9) but

not in Eq. (10).) Similarly, when the stress exceeds powerlaw

breakdown, i.e., when IISll > C, Garofalo's Zener parameter

reduces to the exponential relationship

where A'= A/2 _ and C'= C/n, thereby designating disloca-

tion glide as the rate-controlling mechanism. The ability of

Eqs. (7)-(9) to correlate the stationary creep-rate data of NAR-

loy Z is demonstrated in Fig. 1. The material constants obtained
from this correlation are given in Table 2. Because none of

these data lie within the power-law domain, the exponential

creep equation, Eq. (1 I), was used to determine values for A'

and C' leading to the straight line fit shown in the log/linear
plot of Fig. l(a), where A'=5x 10 _ s -_ and C'=3.5 MPa

for the predefined values of Q--450,000 J/mole (Lewis, 1970)
and Tt; 400"C (assumed). _Taking n = 4 (assumed), the values

This seems to be an excessively large value for Q, but il is the only experi-
mentally determined value currendy available to us.
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Fig.1 Steadystatecreepbehaviorof NARIoyZ. DataarefromLewis
(1970)with thereportedmaterialcomposition:Cu-2.89%Ag-0.22%Zr.

for A' and C' have been converted to those of A and C that
are reported in Table 2. The result is the curved line presented
in the log/log plot of Fig. l(b). We note that the value of C
for NARloy Z, i.e., 14 MPa, obtained with this choice for n,
i.e., 4, is in agreement with the value of C for Cu, i.e., 13
MPa, reported in Freed and Walker (1993a).

This continuum representation for creep is well established.
Our viscoplastic model reduces analytically to this creep model
under steady-state conditions. Hence, the material constants
that characterize this creep model also appear in our visco-
plastic model, which simplifies substantially its characteriza-
tion process.

4 Viseoplastic Flow

A general mathematical structure for viscoplasticity (Freed
et al., 1991) may admit up to three kinds of internal state
variables; they are: (i) the (scalar-valued) drag strength, D> 0;
(ii) the (scalar-valued) yield stress, Y>_0; and (iii) the (devia-
toric tensor-valued) back stress, Bit. The drag strength and
yield stress account for isotropic hardening effects, while the
back stress accounts for kinematic (flow-induced anisotropic)
hardening effects.

Table 2 Steady-state creep constants for NARIoy Z
Constant Units Value

A s- ] 8 x 10Is
C MPa 14
n -- 4
Q J/mo]. 450,000
T,, K - 1350

7-,= ll2T,_

Prager's (1949) constitutive relation is used to describe the
evolution of viscoplastic flow, i.e.,

e_= 1/211_Vll_ (12)
IIS- Bn"

This particular choice for the flow law implies that a nested
set of flow surfaces exists; they are surfaces of constant plastic
strain-rate when evaluated under isothermal conditions. This
constitutes a set of ellipsoids in deviatoric stress space that are
centered on the back stress.

The kinetics of viscoplasticity are taken to be described by
a Zener and Hollomon (1944) type decomposition of state
(Freed et al., 1991), viz.

 )l:o ,+,
where the Macauley bracket, ((IIS-BII- Y)/D), has either a
value of 0 whenever IIS- BII < Y (defining the elastic domain),
or a value of (IIS- BII - Y)/D whenever _S - BII > Y (defining
the viscoplastic domain), with IIS- BII= Yestablishing the yield
surface. Many viscoplastic models have no distinct yield sur-
face, i.e., they set Y to 0. The distinguishing feature between
viscoplasticity (a rate-dependent theory) and plasticity (a rate-
independent theory) is that viscoplasticity admits states both
inside and outside of the yield surface (governed by a kinetic
equation of state); whereas, plasticity admits only states that
are inside and on the yield surface (governed by a consistency
condition), but not outside of it. As a consequence, the plastic
strain-rate is continuous as one moves from the elastic domain

across the yield surface and into the inelastic domain of vis-
coplastic response; whereas, the accumulation of plastic strain
is discontinuous as one moves from the elastic domain onto
the yield surface in plasticity. The elastic domain of many
viscoplastic models is shrunk to a point, as they do not admit
a yield surface.

The internal state variables--Biv, D and Y--are described
by evolution equations that are functions of state. The back
stress evolves rapidly when compared with the rates of evo-
lution for the drag strength and yield stress, which is a source
of mathematical stiffness in the governing equations of vis-
coplasticity. The evolution of the back stress accounts for the
change in material stiffness that is observed during the tran-
sition from elastic to plastic behavior, while the evolutions of
the drag strength and yield stress account for the more gradual
work hardening processes that are caused by the overall ac-
cumulation of plastic deformation. The internal variables are
considered to evolve phenomenologically through competitive
processes associated with strain hardening, strain-induced dy-
namic recovery, and time-induced thermal recovery. Their spe-
cific functional forms are presented later in Section 6, whose
derivations are given in the conference proceedings' version
of this paper, i.e., Freed and Walker (1993b).

5 Creep ,= Viscoplasticity

In the process of going from creep theory to viscoplasticity,
one must remove the steady-state constraint that is present in
creep, and thereby extend the domain of admissible states to
include transient behavior. In other words, viscoplasticity is
capable of modeling both primary and secondary creep be-
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havior. The modeling of transient behavior is done through

the introduction of internal state variables. Although the pur-
pose of viscoplasticity is to model rate-dependent transient

behavior, it is not unreasonable to also require that it reduces
to creep theory under steady-state conditions. An important

objective in our development of a viscoplastic theory is that

it reduces analytically to creep theory when at steady state.

Not only is this a realistic requirement, but it also strengthens

the physics of the theory, and it simplifies greatly the process

of model characterization--about half of our viscoplastic ma-

terial constants come from correlating stationary creep-rate
data alone.

In order for a viscoplastic theory to reduce analytically to

creep theory when at steady-state (i.e., when B = 0, D = 0, and
Y= 0 for II_Pll >0) two conditions must be satisfied. First, the

back stress must be coaxial with the stress at steady state so

that the directions of plastic strain-rate defined by Eqs. (5)

and (12) are also coaxial at steady state. And second, it is

necessary that the kinetics of viscoplasticity, Eq. (13), reduce

analytically to the kinetics of creep, Eq. (7), under steady-state

conditions. The evolution law for back stress given in Eq. (28)

satisfies this first constraint. To satisfy the second constraint,

one must first hypothesize a relationship between the steady-

state and transient Zener parameters, and then hypothesize
another one between the internal and external variables, when

at steady state (Freed and Walker, 1990). We therefore suppose
that

in support of Eq. (13). This relationship implies that the tran-

sient Zener parameter, Z, has the same functional form as the

steady-state Zener parameter, Zss, but with a different argu-

ment; in particular, and in accordance with Eq. (9), we take

Z= A sinhn[ <JIS- BII - YI ]D, (15)

which is similar in form to the kinetics of Miller's (1976) vis-

coplastic model, but with a yield stress and without a power

acting on the Macauley bracket.

Furthermore, we shall suppose that

lIB II= =fi_[llSll] IIS If, Oss = D0+ 61ISII

and Yss=(1 -f)tss[llSIl]llSII, (16)

in support of experimental evidence, where Lss> 0 and _ > 0 are

the steady-state fractions of applied stress that are associated

with the internal stress (i.e., the back and yield stresses) and

the drag strength, respectively, such that 1/2 < t++< 1. The pa-

rameter f partitions the internal stress between isotropic and

kinematic contributions, such that 0 <f< 1. The fact the drag

strength is taken to be proportional to the saturation stress is

a consequence of the fact that the drag strength represents the

material's innate strength to resist plastic flow, i.e., D is a

strength parameter--not a stress parameter. We take the in-

ternal stress to be a nonlinear function of the applied stress at

saturation because that is what the experimental data of Argon

and Takeuchi (1981) and Cadek (1987) suggest. A similar hy-

pothesis to that of Eq. (16) is given in Freed and Walker (1993a)

for the case where the internal stress is composed of two back

stresses with no yield stress.

Because the applied stress and the back stress must be coaxial
at steady state, as discussed above, it follows that

IIS - Blss = IISII - IIBII_. (17)

Therefore, upon equating the arguments of the Zener param-

eters in Eqs. (7) and (14), while utilizing Eqs. (16) and (17),
one obtains the result

1.00

i lIB_

E0.75
_m

+ ,¢ 0

_____0.25

I_ ...... ,_ "'--0.00 _
0.00 0.25 0.50 0.75 1.00

ISI ] ISlma x

Fig. 2 Schematic of internal stress (back plus yield stresses) at steady
state versus applied stress

C-Do-_"S"
tss-

C

C-Do+ 4 (C-Do)2-4<5C(IBNss+ Y=)

2C
(18)

If one uses Eq. (16) and writes _Bllss+ Ys_= t_[llSII]llSII, then

from Eq. (18) one determines that IIBNs++ Y_ = (C-Do

-611Sll)llSl/C. Because a(liBMss+ Yss)/OIISll = 0 establishes the
maximum state of internal stress, one is lead to the result

C-Do
9SIImax=_. (19)

2<5

Substituting this relationship back into Eqs. (16) and (18) gives

additional upper bounds for: the back stress,

IIB IImax = f ( C- Do) 2, (20)
46C

the drag strength,

and the yield stress,

Dm_,= 1/2(c+ Do), (21)

(C-Do) 2
Y.,_ = (1 -f) (22)

4<5C

Similar bounds are given in Freed and Walker (1993a) for the

case where the internal stress is composed of two back stresses

and no yield stress./t is a remarkable fact that one can bound

the stress and internal state variables without specifying any-
thing about how these internal state variables evolve.

Restricting '_s to be real valued, and considering _. to be

associated with the maximum attainable magnitude of internal

stress, one finds on approaching the limit of zero stress that
the ratio of internal stress to applied stress at steady state is

at its maximum, i.e.,

C-Do
lim tss=tmax = -- 1, (23)

ts,-o C

which is in reasonable agreement with Argon and Takeuchi's

(1981) and (_adek's (1987) experimental observations. Ap-

proaching the limit of maximum stress, this ratio attains its
minimum, i.e.,

C-Do
lim _u _ train = = 1/2, (24)

IISl -- IIS Imax 2C

which is in reasonable agreement with Lowe and Miller's (1983)

and Argon and Bhattacharya's (1987) experimental observa-

tions. A schematic of the steady-state internal stress versus the

applied stress--as predicted by Eqs. (16) and (18) with typical
values of Do = C/IO0 and f= 0.6--is presented in Fig. 2. The

trends depicted therein are in qualitative agreement with the

experimental results referenced above.
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Table 3 Additional viscoplastic constants for NARIoy Z

Constants Units Value

6 -- 0.035
-- 0.65

f MPa 11

f -- 6.4

Do= C/IO0

TO be physically meaningful, IIBII>__0, D > 0, and Y-> 0. Fur-
thermore, their steady-state values ought to increase mono-

tonically with increasing stress (Freed and Walker, 1990). This

is verified easily for our hypothesis, Eqs. ((14), (16), and (17)),

as long as 0_< IIBII_< IlBIIma, Do<-D-<Dmax and 0_< Y_< }"max.

6 The Model

A succinct description of our viscoplastic model is given
below. The stress is acquired through the constitutive equations

S/I=2MEij-_) and akk=3_:(Ek_--a(T--To)bkk). (25)

The flow equation and kinetics that describe plastic straining

are given by

S o- Bij
_P=I/211_PlII_-B- _ and II_PlI=0Z, (26)

respectively, with the von Mises norm of effective stress being

defined by

liS - BII = ,] 1/2 (Sij- Bij) (S o - Bij). (27)

The evolutions of back stress and drag strength are given by

and 1)=h(ll_PlI-AIl_Pll-Or), (28)

respectively, such that Do<-D<Dmax, while the yield stress is

related through the state function

(D-Do) (C-D)
Y= (1 -f) , (29)

6C

which is not an evolution equation. Associated with these re-

lationships are the material functions:

t9= (30)

H=(0.1+0.9()g and L=f (D-D°)(C-D)
_5C , (32)

A=e_j and r=Asinhn[D_-_D°l, (33)

L ocJ
with

v.s-.., (34)
Restricting the drag strength to be bound by the interval

/90-</)-</)max restricts automatically the remaining variables:

0_< IISII_ IISIIma, 0-< IIBII-< IIBllma× and 0--- Y-< Ym_. The de-

velopment of the evolution equations for the back stress and
drag strength, along with the derivations of their associated

material functions, are given in the conference proceedings'

version of this paper (Freed and Walker, 1993b). Also found

therein is a detailed discussion of how one goes about char-
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Fig. 4 Saturated hysteresis loops for NARIoy Z. Data are from Conway
et al. (1975). Experiment (c) versus theory (--). _ =0.004 s-_ and
T= 538"C.

acterizing this particular model. Values for the remaining tran-

sient constants of our viscoplastic model are given in Table 3

for NARIoy Z.

For unaxial loading histories in tension and compression,

the above governing equations hold with the following alter-
ations:

II_vll

o=E(e-ev-oL(T - To)), _P=sgn[a-13] ._

II_PlI) , (35)and _=3H(_-_

given that a=011 = 3/2Sii,/3 =/311 = 3/2B11, e =_1_ and _P=e_l.

As for the material functions, the above equations apply with

the following alterations:

Z:Asinh"[< '°-_'-x/_Y\l_j-3D" /J

The ability of the model to correlate (not predict) monotonic

and cyclic material behavior is presented in Figs. 3 and 4,

respectively, for NARIoy Z. Data for this material are sparse,

thereby not permitting a more detailed assessment of the mod-
el's predictive capability. In part, this demonstrates a design

objective in our development of this model--the capability to

characterize the model from a sparse data set.

This model is not perfect, and certainly not ideal, but hope-
fully it represents another step in that direction. It is a sire-
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plified continuum description of complex microscopic

phenomena; nevertheless, its development has been guided by

the physics of these phenomena. There are several known de-

ficiencies associated with this model. They are: the predicted,

transient, rate dependence, which is extrapolated from steady-

state dependence, does not always match experimentally ob-

served rate dependence, for example, the rate dependence ex-

hibited during a stress relaxation experiment (Freed and Walker,

1993a); predicted transient behavior in the region of transition

between the domains of power-law and exponential behaviors,

which is also taken from steady-state behavior, does not always

agree with experimental observations (Loh, 1993); and the well-

known fact of excessive, predicted, ratchetting behavior, which

is a consequence of our using the Armstrong and Frederick
(1966) evolution equation for back stress (Freed and Walker,

1993c).

7 Closure

By designing the development of our viscoplastic model in

such a manner that it reduces analytically to a creep model

under steady-state conditions, we have incorporated essential

physics into our model, and we have also simplified greatly

the process that one must go through in order to completely

characterize a material with this model. In this sense, we have

developed a viscoplastic model with an eye towards its char-

acterization. This has particular merit because parameter es-

timation of a viscoplastic model is, in general, a very complex

process that all too often prohibits its use in applications. A
model's relative ease of characterization without the need for

exotic experiments is often considered by many industrial users

of viscoplasticity to be of greater value than the model's ability

to predict accurately a material's behavior (within reason). Our

model was developed with this fact in mind, where we have

sought to strike a balance between accuracy and ease of char-

acterization using physics as our guidepost.
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